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Given a closed convex cone C in a Hilbert space H. we investiga:e the function
which a'isigns to each point x in H the nearest point of C to x. We call this function
the projection of l/ onto C and we give an algebraic characterization of this
function which generalizes the well-known characterization of a projection onto
a dosed subspace as an idempotent. symmetric linear operator. r 1991 AcademIC

Prc!ls. Inc

I. INTRODUCTIOI\

Let H be a real Hilbert space. The subset C of H is a Chebyshev set if
for each point x of H, there is a unique point of C which is nearest to x;
i.e.. there is a point z in C such that 1x - zii < !ix - )'1: for every y E C\ {z}.
The point z is sometimes called the point of best approximation in C to x.
The set C is said to be convex if tx + (I - t) y E C whenever x, y E C and
o~ t ~ 1. It is well-known that every closed, convex set in a Hilbert space
is a Chebyshev set. It remains unknown if the converse (see Question 1
below) is true.

QlJESTIO:-; 1. If C is a Chebyshez; set in a Hilbert .\pacc, is C closed and
conz;ex?

It is immediate that C is closed; so convexity is the real issue. A number
of people have given positive answers to Question I in a finite dimensional.
setting. See, for example, [4, 9, 10, 12, 15, 19]. V. L. Klee [13 ] has the
most general positive result in an infinite dimensional setting. He shows
that weakly closed and Chebyshev implies convexity. G. G. Johnson [11 ]
has an example of a non-convex Chebyshev set in a non-complete inner
product space. It is not known if his example can be extended to the com
pletion of the space. Some other results related to this questian can be
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found in [1, 3, 16, 17 l Thorough discussions of this question can be found
in [6; 19, Sect. 2; 20l

If C is a Chebyshev set, there is a natural surjective function p: H --+ C
such that, for each x E H, p(x) is the unique nearest point of C to x. We
will call p the projection of H onto C. Other authors have called p a
proximity or ncar-point function. The focus of this paper is to study the
algebraic characteristics of projections onto certain Chebyshev sets in
Hilbert spaces. In particular, we will give an algebraic characterization of
projections onto closed convex cones. This result generalizes the well
known characterization of projections onto closed subspaces as idem
potent, symmetric, linear operators (sec [14, p. 394] or [18, p. 299] ).
While this characterization is of interest in its own right, a similar charac
terization, if one exists, of projections onto closed convex sets might
provide a new approach to answering Question 1.

Some other results related to projection mappings onto closed convex
cones can be found in [2, 7, 22, 23, 24 l

II. CONVEX CO:SES AND PROJECTIONS

A Hilbert space H is a complete inner product space. A non-empty sub
set of H is a convex cone if it is closed under addition and closed under
multiplication by positive scalars. We will also assume that 0 is an element
of all cones under consideration in this paper. Linear subspaces are convex
cones and convex cones are clearly convex. We begin by stating some
elementary results about convex cones and projections onto closed convex
cones. These results will be of use to us later in the paper.

LEMMA 1. Let C he a com:ex cone.

(i) If x E H, Y E C, and there exist :x> 0 and fJ ~ 0 such that
ax+ fJYE C, then XE C.

(ii) Let x, y E H. There exist a, fJ > 0 such that :xx + fJy E C if and only
!f there exist 0 < t < 1 such that tx + (1 - t) Y E C.

Proof (i) Now, 1/0:>0 and -fi/a~O, so x=(I/o:)(o:x+{3y)+
(-fJ/r:x)YEC.

(ii) Suppose there exist a> 0 and f/ > 0 such that ax + {3y E C.
Let t=a/(('J.+{3). Then O<t<1 and tx+(1-t)y=(a/(:x+{3))x+
W/(:x+/J))y=(I/(a+f/))(('J.x+/Jy)EC. The other direction is trivial.

For Cs H, let C* = {XE HI <x, y) ~O for every yE C}. (C* is called the
dual cone of C.) The results in the next lemma are well-known, so we omit
the proofs.
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LEMMA 2. Let e ~ H.

(i) C* is a closed, convex cone.

(ii) C is a closed, convex cone if and only if C = C* *.
(iii) Let e be a closed, convex cone and x E H. Then there is a unique

XlEe and a unique X2EC* such that X=X 1 +x2 and <x:,x2 )=0. (XI IS

the nearest point of C to x and x 2 is the nearest point (~r C* to x.)

LEMMA 3. Let e be a closed convex cone, p the projection of H onto C,
and x, y E H. Then

(i) p2=p (p is idempotent).

(ii) p('Y.x) = 'Y.p(x) for 'Y. ~ 0 (p is non-negatively homogeneous).

(iii) p(x+y)=p(x)+p(y) if and only (l <p(x\'y)=<p(x).p(y)
= <x, p(y).

(iv) <x- pix), ply)~ ::::;0.

(v) <x-p(x),p(x)=O.

(vi) Ipix) - ply):' ::::; I'x - Y I (p is non-expansire).

(vii) 1- p is the projection of H onto C*.

(viii) C* = p 1(0).

Proof With the possible exception of part (iii), all of these are well
known facts. Therefore, we will prove only part (iii). Proofs for parts (i)
and (ii) are easy. Parts (iv) and (v) actually characterize the clement pix)
in C which is the projection of x onto C (sec [8, Prop. 1.12.4 J). That p is
non-expansive can be found in [5, Th. 3]. Proofs for parts (vii) and (viii)
are straightforward.

Proof (~l (iii). We first note that by part (v), we have that for x, y E H,

<plY), x- pix)~ + <pix), y- plY)~

= <pix), x- pix)~ + <plY), x- pix)~

+ <pix), y - p(y) + <ply), y - p(y)

= <pix) + plY), x + Y - (p(x) + p(y))).

Now suppose x,yEH and p(x+y)=p(x)+p(y). Then by (*) and
part (v), we have

<plY), x- p(x) + <pix), y- p(y» = <p(x+ Y), x+ y- p(x+ y) =0.

Since both <plY), x- p(x» and <pix), y- plY)~ are non-positive by
part (iv), this implies that <plY), x - p(x) = 0 = <pix), y - p(y).
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Now suppose <p(y), x- p(x) =0= <p(x), y- p(y). Write

x + y = p(x) + p(y) + (x + y - (p(x) + p(y))),

where p(x) + p(y) E C, and x + y - (p(x) + p(y)) E C* by part (vii) and
Lemma 2, part (i). Also, <p(x)+p(y),x+y-(p(x)+p(y)))=O by (*)
and our assumption. Observe that

x+ y= p(x+ y)+ (x+ y- p(x+ y))

is also a representation of x + y in the form given by Lemma 2, part (iii).
By the uniqueness of this type of representation, we must have that
p(x + y) = p(x) + p(y).

III. IDEMPOTE~T, POSITIVELY HOMOGENEOUS,

FACE-LINEAR TRANSFORMATIONS

We will foeus on properties (i), (ii), and (iii) of Lemma 3. They are
analogous to the idempotent, symmetric, and linear properties which
characterize projections onto closed subspaces. In particular, property (iii)
says that a projection onto a closed, convex cone is additive with respect
to two points if and only if it is symmetric with respect to these points. We
will say that a function which satisfies this property is face-linear. For the
remainder of this paper, we let n: H -+ H denote an arbitrary function
which satisfies the following three properties. For x, y E H,

(1) n2(x)=n(x),

(2) n(exx) = ~n(x) for ~ > 0, and

(3) n(x + y) = n(x) + n(y) if and only if <n(x), y) = <n(x), n(y) =
<x, n(y).

For convenience, we let K = n(H). For M ~ H, let M and F(M) denote
respectively the topological closure and boundary of M. We now consider
the following question.

QCESTION 2. Is K a closed, convex cone and, if so, is n the projection of
H onto K?

We begin by looking at some of the properties that nand K must have.

THEOREM 1.1. Let x, y E H. Then

(i) <x - n(x), n(x» = O.

(ii) Iln(x)il:( Ilxil· Furthermore, Iln(x)11 = Ilxll if and only ifn(x)=x if
and only if x E K; and Iln(x)11 < Ilxll (l and only if x ¢ K.
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(iii) n(O)=O.

(iv) K is a convex cone.

(v) If n(x + y) = n(x) + n(y), then, for every :x, fJ ~ 0, n(:xx + fJy) =
n(:m(x) + fiy) = n(cr:x + fin(y)) = n(:xn(x) + fin(y)) = :xn(x) + fInly)·

(vi) If n(x)=n(y), then, for :x,f1~0, n(:xx + fiy) = (:x+fi)n(x). In
particular, n(xx + fJn(x)) = (et + fJ) n(x).

(vii) If xEn1(0), yEK, and (x,y)=O, then, j(Jr :x,fJ~O.

n(:xx + fiy) = fJy·

(viii) If XE n-I(O), y EK, (x, y) = 0, and :xx + fJy EK for some x>°
and fi ~ 0, then x = 0.

(ix) If:xx+fJn(x)EKfor some a>O and fJER, then XEK.

(x) IfxiK, then n(x)EF(K).

(xi) K*s;n-1(0).

Proof (i) By property (2), n(x+x)=n(2x)=2n(x)=n(x)+n(x). By
property (3), this implies that (n(x), x) = (n(x), n(x).

(ii) By part (i), we get that ilxiI 2 =!lx-n(xH 2 +lln(x)f. This
implies thatin(x)11 ~ flxli. If l,n(x)l! = Ilxll, then we get that ilx-n(x),1 =0;
and thus n(x)=x. If xEK, then x=n(y) for some yEH. By property (1),
this implies that n(x) = n(n(y)) = n(y) = x. The other implications of (ii)
are trivial.

(iii) By part (ii), iln(O)!1 ~ 1011 = O. Thus, n(O) = 0.

(iv) Suppose x, y EK and x ~ O. By part (ii), n(x) = x and n( y) = y.
Hence, each of (n(x), y), (n(x), n(y), and (x, n(y) is equal to (x, y).
We have that n(etx) = etn(x) =:xx by property (2), and n(x + y) =
n(x)+n(y) by property (3). From part (ii) again, we have that
xx, x + Y EK. Thus, K is a convex cone.

(v) By property (3), (n(x),y)=(n{x),n(y)=(x,n(y). By
property (2), we get that

(n(:xx), fJy) =:xfJ(n(x), y),

(n(:xx), n(fJy) =cr:fJ(n(x), n(y),

(:xx, n{fJy) =r:xfi<x, n(y).

Thus, (n(xx), fJy) = <n(cr:x), nUiy) = (:xx, n(fJy). By properties (3) and
(2), this implies that n(xx+ fJy) =n(:xx) + n(fiy)=:xn(x) +fJn(y). Using
properties (1) and (2), the other equalities in this part follow in a similar
manner.

(vi) By part (i), each of <n(x), y). (n(x), n(y). and (x, n(y) is
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equal to In(x)f. By property (3), this implies that n(x+y)=
n(x) + n(y) = 2n(x). This part now follows from part (v).

(vii) This statement follows from property (3) and from (v) above.

(viii) By (vii), n(!Xx + py) = fly. Since !Xx + f1y E K, it follows that
n(xx + fly) = ax + py. Thus,xx = 0; and therefore, x = O.

(ix) If fl;::O, it follows from (vi) that n(ax+ pn(x)) = (!X +f1)n(x).
Since !Xx + pn(x) E K, we get that n(:xx + pn(x)) = :xx +[1n(x). Hence,
x = n(x), and thus x E K. If fl < 0, let t = 1/(1 - [1). Clearly 0< t < 1. Since
K is convex, t(!Xx + pn(x)) + (1 - t) n(x) E K. Now, t(:xx + [1n(x)) +
(1 - t) n(x) = (t:x)x. Hence, since K is a cone, x E K.

(x) Since x¢K, it follows from (ix) that for each :x>0,
:xx + (1-:x) n(x) ¢ K. Hence, n(x) E F(K).

(xi) Suppose x E K*. Then by part (i), 1 n(x) 1
2 = <x, n(x) >~°(since

n(x)EK). Thus, n(x)=O, and hencc XEn 1(0).

Since the image of n, namely K, must be a convex cone, we Ict p be the
projection of H onto K and we note two relationships between nand p.

THEOREM 1.2. Let x E H. Then

(i) ffp(x)En 1(0), then,for :x,fl;::O, xp(x)+P(x-p(x))En 1(0).

(ii) If p(x) E K, then n(x) = p(x).

Proof. (i) By Lemma 3, part (vii), x- p(x) E K* = K*. By Theorem 1.1,
part (xi), n(x-p(x))=O. Thus, by Theorem 1.1, part (vi), n(:xp(x)+
[1(x-p(x)))=(:x+fl)n(p(x))=O.

(ii) As in (i) above, n(x - p(x)) = O. Also, by Lemma 3, part (v),
<x - p(x), p(x) >= O. Thus, by Theorem 1.1, part (vii), n(x) = n((x - p(x))
+ p(x))= p(x).

Note that if p is the projection of H onto a closed, convcx cone, then p
also has all of the properties listed in Theorem 1.1. It is not immediately
apparent whether properties (1 ), (2), and (3) imply that K is closed or that
n is the projection of H onto K. The next result shows that if K is closed,
then we do have that n is the projection of H onto K.

THEOREM 2. Suppose that n: H --+ H is a function, C = n(H), and C is
closed. Then C is a closed, convex cone and n is the projection of H onto C
if and only if n satisfies properties (1), (2), and (3).

Proof If n satisfies properties (1), (2), and (3), then by Theorem 1.1,
part (iv), C is a closed, convex cone. By Theorem 1.2, part (ii), p(x) = n(x)
for all x E H, where p is the projection mapping of H onto C = C. Hence,
n is the projection mapping of H onto C.
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The opposite implication is immediate from Lemma 3.
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COROLLARY 1. Suppose that n: H ~ H is a function and C = n( H). Then
C is a closed, convex cone and n is the projection mapping of H onto C if
and only if n is a continuous function sati.~fj!inf!, properties (1), (2), and (3).

Proo! Suppose n is continuous and satisfies (1), (2), and (3). It follows
from continuity and idempotentness that C is closed. Thus, by Theorem 2,
C is a closed convex cone and n is the projection of H onto C.

The opposite implication again follows from Lemma 3.
We point out that if n is the projection mapping onto a closed convex

cone, then it follows from Lemma 3(vi) that n is continuous. It would be
of interest to know if one must assume continuity of n to obtain the
opposite implication in the characterization given in Corollary 1. Thus, we
ask the following question.

QCESTIO~ 3.1. In Corollary 1, can the assumption that n is continuous be
omitted?

It is equivalent to ask the following.

QCESTIO~ 3.2. In Theorem 2, can the assumption that C is closed be
omitted?

If properties (2) and (3) of n are replaced with "n is symmetric and
linear," it is well-known that these conditions characterize n as the projec
tion onto a closed linear subspace of H. In this setting, the assumption that
n is continuous (or that n(H) is closed) is not necessary.

The second author can show that the answer to Question 3.1 (or
Question 3.2) is YES if dim(H) ~ 3.
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